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1 Convolvers in `2(Γ)

1.1 The group von Neumann algebra of Z

Let’s give a more concrete description of the elements of L(Γ).

Example 1.1. If Γ = Z, then L(Γ) ∼= L∞(T) via the Fourier transform. More precisely,
L∞(T) ∼= {

∑
cnz

n ∈ `2(Z) : f ∗ g ∈ `2(Z) ∀g ∈ `2(Z)} via the map L∞(T) → L(Z) given
by f 7→

∑
cnz

n, where cn = 1
2π

∫
fe−int dµ.

It turns out the general picture looks similar to this case.

1.2 Convolver elements in `2(Γ)

For ξ ∈ `2(Γ), we get Lξ : `2 → `∞, where Lξ(η) = ξ · η. Then ‖Lξ‖B(`2,`∞) ≤ ‖ξ‖`2 . We

also defined (Lξ, D(Lξ)) as a closed graph operator on `2, where D(Lξ) = L−1
ξ (`2) = {η ∈

`2 : ξ · η ∈ `2}. This domain contains CΓ, the finitely supported series, and the operator
has closed graph.

Lemma 1.1. L∗ξ = Lξ∗, where ξ
∗(g) = ξ(g−1).

Proof. We can show this for monomials, and by linearity, we can show it for all η ∈ CΓ.

Definition 1.1. An element ξ ∈ `2(Γ) is called a (left) convolver if Lξ(`
2) ⊆ `2 (i.e.

D(Lξ) = `2(Γ).

Corollary 1.1. ξ is a left convolver if and only if ξ∗ is a left convolver.

Proposition 1.1. If ξ is a convolver, then Lξ : `2 → `2 is bounded.

Proof. This follows from the closed graph theorem.

Lemma 1.2. If ξ, η, ζ ∈ `2(Γ) and ξ · η, η · η ∈ `2, then (ξ · η) · ζ = ξ · (η · ζ).

Corollary 1.2. If ξ, η are convolvers, then ξη is a convolver, and LξLη = Lξ·η.
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Corollary 1.3. ξ is a left convolver if and only if ξ∗ is a right convolver.

Proof. (ξ · η)∗ = η∗ · ξ∗.

Theorem 1.1. Let LC(Γ) := {Lξ : ξ is a convolver}, RC(Γ) := {Rξ : ξ is a convolver}.
Then LC(Γ) and RC(Γ) are von Neumann algebras. Moreover, LC(Γ) = L(Γ) = R(Γ)′,
and RC(Γ) = R(Γ) = L(Γ)′.

Remark 1.1. This theorem tends to have limited utility, but it provides great intuition
about what L(Γ) and R(Γ) looks like.

Proof. LC(Γ) is SO closed: Let {xi} be left convolvers such that Lξi
so−→ T ∈ B(`2). Let

|xi = T (ξe. Then ‖ξi − ξ‖`2 → 0 because ξi = Lξi(ξe) → T (ξe) = ξ. But also Lξi → Lξ in
B(`2, `∞) because ‖Lξi−ξ‖B(`2,`∞) ≤ ‖ξi − ξ‖`2 . This implies that Lξ in B(`2, `∞). So ξ is
a convolver.

We now have that LC(Γ) is a SO-closed *-algebra in B(`2(Γ)). So it is a von Neumann
algebra. We also have LC(Γ) ⊇ CΓ, the finitely supported convelvers. So LC(Γ) ⊇ L(Γ);
similarly, RC(Γ) ⊇ R(Γ). Also, we have LC(Γ) commutes with RC(Γ): (ξ ·η) ·ζ = ξ · (η ·ζ)
gives us Rη(Lξ(η)) = Lξ(Rξ(η)).

Thus, L(Γ) ⊆ LC(Γ) ⊆ RC(Γ)′ and R(Γ) ⊆ RC(Γ) ⊆ LC(Γ)′. This implies that
L(Γ)′ ⊇ LC(Γ)′ ⊇ RC(Γ) and R(Γ)′ ⊇ RC(Γ)′ ⊇ LC(Γ). We claim that R(Γ)′ ⊆ LC(Γ);
this will finish the proof.

Let T ∈ R(Γ)′ and let ξ = T (ξe). Then

T (ξg) = T (Rxig(ξe) = Rξg(T (ξe)) = Rξg(ξ) = Lξ(ξg).

By linearity, T = Lξ on CΓ. These coincide on a dense subset of `2(Γ), so T = Lξ.

Now we will switch our notation. We will denote L(Γ) = {
∑
cgng : square summable}

endowed with the formal product of series. This is to make the connection with Fourier
series more apparent. What does the trace state look like with this notation?

τ
(∑

cgug

)
= ce.

Notice that
〈x, y〉 = τ(y∗x) = 〈x, y〉`2(Γ) .

If we let M = L(Γ) with this inner product, then `2(Γ) = M
‖·‖τ

by the GNS construction.
Next time, we will prove the following theorem in two different ways.

Theorem 1.2. L(Fn) 6∼= L(S∞) for n ≥ 2.
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