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1 Convolvers in (?(T)

1.1 The group von Neumann algebra of 7Z

Let’s give a more concrete description of the elements of L(T').

Example 1.1. If I' = Z, then L(I") =2 L*°(T) via the Fourier transform. More precisely,
L®(T) = {> cp2™ € 12(Z) : fxg € ?(Z)Vg € £2(Z)} via the map L*°(T) — L(Z) given
by f+— > cp2", where ¢, = i [ fe~m™dp.

It turns out the general picture looks similar to this case.

1.2 Convolver elements in (?*(T")

For ¢ € £*(T'), we get L : (2 — (>, where Le(n) = & - 1. Then || Lellgz ) < [[€]l2. We
also defined (Lg, D(L¢)) as a closed graph operator on ¢2, where D(L¢) = Lg1(€2) ={ne
?%2 . ¢.n € £?}. This domain contains CT', the finitely supported series, and the operator
has closed graph.

Lemma 1.1. L} = Lg«, where §*(g) = £(g71).
Proof. We can show this for monomials, and by linearity, we can show it for allp € CI'. O

Definition 1.1. An element £ € ¢*(T) is called a (left) convolver if L¢(¢?) C ¢* (i.e.
D(L¢) = ¢(T).

Corollary 1.1. £ is a left convolver if and only if £ is a left convolver.
Proposition 1.1. If £ is a convolver, then Lg : > — (% is bounded.

Proof. This follows from the closed graph theorem. O

Lemma 1.2. If€7n7C€€2(F) ‘mdf‘ﬁan’UEEQ; then (577)4.:5(774)

Corollary 1.2. If £,n are convolvers, then §n is a convolver, and L¢Ly, = Le.,.
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Corollary 1.3. £ is a left convolver if and only if £ is a right convolver.

Proof. (€-n)* =n*-¢*. O

Theorem 1.1. Let LC(T") := {L¢ : £ is a convolver}, RC(I') := {R¢ : £ is a convolver}.
Then LC(T") and RC(T') are von Neumann algebras. Moreover, LC(T') = L(T') = R(T"),
and RC(T') = R(T") = L(T)'.

Remark 1.1. This theorem tends to have limited utility, but it provides great intuition
about what L(T") and R(T") looks like.

Proof. LC(T') is SO closed: Let {z;} be left convolvers such that L¢, = T € B(£2). Let
|zi = T'(&. Then ||& — ||z — 0 because & = L¢, (&) — T'(&) = & But also L¢g;, — L¢ in
B((?,6>°) because ||Le,—¢|| (e o) < [|€ — &llp2. This implies that L in B(¢2,£>). So £ is
a convolver.

We now have that LC(T) is a SO-closed *-algebra in B(¢2(T')). So it is a von Neumann
algebra. We also have LC(I') D CT, the finitely supported convelvers. So LC(I") D L(I');
similarly, RC(I") O R(I"). Also, we have LC(I") commutes with RC(T"): (£:1)-¢ =&-(n-¢)
gives us Ry (Le(n)) = Le(Re(n)).

Thus, L(I') € LC(T") € RC(T')" and R(I") € RC(I') C LC(T")’. This implies that
L(T) 2 LC(T") 2 RC(T) and R(I")’ 2 RC(T")’ 2 LC(T"). We claim that R(I") C LC(T);
this will finish the proof.

Let T € R(T) and let € = T(&,). Then

T(ég) = T(R:m'g (ée) = R&g (T(ge)) = Rég (f) = L£(§g)-
By linearity, 7= L¢ on CI'. These coincide on a dense subset of £(I'), so T' = Lg. O]

Now we will switch our notation. We will denote L(I") = {> ¢4ng : square summable}
endowed with the formal product of series. This is to make the connection with Fourier
series more apparent. What does the trace state look like with this notation?

T (Z cgug> = Ce.

Notice that
(z,y) =7(y"2) = (z,9) () -

If we let M = L(T") with this inner product, then ¢2(T") = - by the GNS construction.
Next time, we will prove the following theorem in two different ways.

Theorem 1.2. L(F,) 2 L(Sx) forn > 2.
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